Impact of PCSK9-Inhibitors

Daniel Jude, PharmD, AAHIVP, CSP
Manager of Specialty Clinical Services
Fairview Specialty Pharmacy
Specialty Therapies: A Forum For Payers
2017
January 27th, 2017
Objectives

• Review PCSK9-inhibitors and their use
• Analyze pricing pressures of PCSK9-inhibitors
• Work through a cost-effectiveness analysis to determine value
• Examine patient adherence to PCSK9-inhibitors
• Explore the pipeline and how it may affect current drugs on the market
Cholesterol Homeostasis

• Cholesterol is used in the body to:
 – Maintain cell membranes
 – Help synthesize vitamin D
 – Produce hormones, steroids, bile acids

• Too much cholesterol alters the balance:
 – Lipoproteins metabolism, transporting lipids to and from tissues
 – Extra LDL deposits in arterial wall
 – High LDL areas cause inflammation, then plaques

Familial Hypercholesterolemia (FH)

• Autosomal: 2 genes for all proteins
• Complex and numerous mutations, all adding at least a little to the equation
• Heterozygous (1 in 200-500 people)
 – vs. homozygous (1 in 1,000,000 births)
• High LDL values impact ASCVD risk
• Prognosis: untreated pts can have up to 3x risk of ASCVD
• Treatment: statins, then others

Atherosclerotic Cardiovascular Disease

• Multifactorial etiology
 – Family history genetics; smoking, hypertensives, diabetes, hyperlipidemia, metabolic syndrome, etc.

• Three main dimensions (not mutually exclusive)
 – Coronary Heart Disease\(^1\)
 • Most common cause of death in the US, about 1 in 4
 • At age 40y, incidence is 49% in men and 32% in women
 – Cerebrovascular\(^2\)
 • Global incidence ischemic stroke is 68%; “stroke belt”
 – Peripheral vascular\(^3\)
 • Prevalence increases greatly with age, 0.9% for 40-49yo and 23.2% 80+yo

• Sanofi/Regeneron provided 16 pages of ICD-10s to assist with billing PCSK9 medications\(^4\)

• Treatments based on etiology and comorbidities; often polypharmacy

Heart Attack Death Rates, 2011-2013
Adults, Ages 35+, by County

Rates are spatially smoothed to enhance the stability of rates in counties with small populations.

Data Source:
National Vital Statistics System
National Center for Health Statistics

https://www.cdc.gov/dhdsp/data_statistics/fact_sheets/images/fs_heart_attack.jpg
PCSK9 and Inhibition

• LDL-receptors ‘grab’ LDL from the blood for processing in the cell
• PCSK9 binds to LDL-receptors, causing degradation once brought into the cell
 – Doesn’t prevent from working, just decreases recycling
• Blocking PCSK9 activity increase LDL-receptor recycling

http://www.nature.com/nrcardio/journal/v11/n10/images_article/nrcardio.2014.84-f1.jpg
Current PCSK9 Products

<table>
<thead>
<tr>
<th></th>
<th>Alirocumab (Praluent)</th>
<th>Evolocumab (Repatha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer</td>
<td>Sanofi/Regeneron</td>
<td>Amgen</td>
</tr>
<tr>
<td>FDA Approval Date</td>
<td>July 24th, 2015</td>
<td>August 27th, 2015</td>
</tr>
<tr>
<td>FDA Approved Indications</td>
<td>Adjunct to diet and maximally tolerated statin for HeFH or clinical ASCVD</td>
<td>Adjunct to diet and • maximally tolerated statin for HeFH or clinical ASCVD • Other LDL-lowering in HoFH</td>
</tr>
<tr>
<td>Dose</td>
<td>75mg SC Q 2 weeks, can increase to 150mg</td>
<td>140mg SC Q 2 weeks, or 420mg Q 1 month</td>
</tr>
<tr>
<td>Administration Concerns</td>
<td>Must be refrigerated at all times, 24 hour window</td>
<td>420mg: 9 min infusion vs. 3 injections Room temp, but must use w/in 30 days</td>
</tr>
<tr>
<td>Efficacy (LDL decrease)</td>
<td>- 58% in LDL-C (wk 24)</td>
<td>-56% to -62% in LDL-C (wk 12)</td>
</tr>
<tr>
<td>Safety (Common Adverse Events)</td>
<td>Local injection site reactions, URI, nasopharyngitis</td>
<td>Rare: severe allergic reactions, neurocognitive events</td>
</tr>
<tr>
<td>AWP (2015)</td>
<td>$14,240/year</td>
<td>$14,100/year</td>
</tr>
</tbody>
</table>
What is “Maximally Tolerated Statin”?

- Statins
 - Very potent LDL-lowering effects
 - Proven outcomes trials
 - Cornerstone of ASCVD primary and secondary prevention
 - Adverse events common: myopathies and GI issues
- “The highest dose associated with an acceptable side-effect profile” – ODYSSEY study w/ alirocumab
- Adds a subjective variable to the process
Pricing Pressures/Issues

• Less expensive alternatives with greater evidence
• New generics on the market soon for newer generation alternatives
• Market access via PBM and payer contracts
• Pfizer pulled bococizumab on November 1st, no other PCSK9i soon

• Ongoing litigation for Amgen’s patents
 – As of 1/7, Amgen won lawsuit and federal judge banned sale of Regeneron’s product, still can appeal or settle.¹

• Large discrepancy between ICER-reported value and WAC
• Outcomes ever more important in healthcare

“The Next Big Thing”

• Many articles trumpeting approval and impact:
 – Specialty Pharmacy Times, August 11, 2015¹
 • 2.3 million eligible, could cost $23 billion annually
 • PRIME estimates for Medicare of $15.66 PMPM
 • ~240k Americans who do not tolerate statins, possibly adding $2.1 billion
 – USA TODAY, August 16, 2016²
 • $120 billion added to costs if all eligible took PCSK9s, according to JAMA

Why Pay for Something Unproven?

• Ezetimibe story:
 – FDA approved in 2002 to lower LDL
 – Article in 2008 showed lack of effect on carotid intima-media thickness in familial hypercholesterolemia, even though it lowered LDL levels greater than simvastatin alone (-39.1% vs -55.6%)\(^1\)
 – Article in 2015 showed a 2 percentage-point absolute risk reduction for composite death from CVD, major coronary event, or nonfatal stroke. (24% additional lowering of LDL-C w/ ezetimibe)\(^2\)

• Guidelines:\(^3\)
 – Maximize lifestyle changes and statin adherence before considering a nonstatin drug
 – Add nonstatin drug that have been shown risk-reduction in RCTs

Stone NJ et al. 2013 ACC/AHA Blood Cholesterol Guidelines. http://circ.ahajournals.org/content/early/2013/11/11/01.cir.0000437738.63853.7a
PCSK9i PA Criteria

- CVS/Caremark as an example:
- Complex compared to non-specialty PA criteria

III. CRITERIA FOR INITIAL APPROVAL

A. Clinical atherosclerotic cardiovascular disease (ASCVD)

Authorization of 12 months may be granted for members who meet ALL of the criteria listed below [1, 2, 3 and 4]:

1. Member is 18 years of age or older
2. Member has a history of ASCVD or cardiovascular event (See Appendix A)
3. Member meets at least ONE of the following requirements [a, b or c]:
 a. Member has a current LDL-C level ≥ 70 mg/dL after at least three months of an adherent treatment with a high-intensity statin (i.e., atorvastatin ≥ 40 mg or rosuvastatin ≥ 20 mg daily) plus ezetimibe 10 mg daily.
 b. Member has a current LDL-C level ≥ 70 mg/dL with contraindication or intolerance to statin (See Appendices B and C) and is taking ezetimibe with or without other lipid lowering medications at maximally tolerated doses or at the maximum doses approved by the FDA.
 c. Member has a current LDL-C level ≥ 70 mg/dL and contraindication to both statin and ezetimibe (See Appendix C)
4. Member’s current triglyceride is less than or equal to 400 mg/dL
CONTINUATION OF THERAPY

A. ASCVD

1. Authorization of 12 months may be granted for members who have received at least a three-month supply of the requested medication within the previous 120 days through a prior authorization process for a pharmacy or medical benefit and achieve or maintain an LDL-C reduction, as defined below [a, b or c]:
 a. LDL-C reduction \geq 35%
 b. Absolute reduction in LDL-C \geq 40 mg/dL
 c. Reduction below an LDL-C level of 70 mg/dL

2. Authorization of 12 months may be granted for members who have received at least a three-month supply of another PCSK9 inhibitor within the previous 120 days through a prior authorization process for a pharmacy or medical benefit.
APPENDIX B. Statin-associated muscle symptoms (SAMS) and statin re-challenge

- Intolerable SAMS persisting at least two weeks confirmed with at least two attempts of statin re-challenge.
 NOTE: Re-challenges must include two different statins. One of the statins must be atorvastatin or rosuvastatin.
- Statin-associated elevation in CK level ≥ 10 times upper limit of normal (ULN)
 NOTE: Statin re-challenge is NOT required for members who have experienced an elevation of CK level greater than or equal to 10 times ULN after receiving lipid-lowering therapy (LLT) with a statin.
- Statin-associated rhabdomyolysis (i.e., statin-associated elevation in CK level > 10,000 IU/L or significant elevation in creatinine level)
 NOTE: Statin re-challenge is NOT required for members who have experienced rhabdomyolysis after receiving LLT with a statin.
APPENDIX C. Contraindications to statin and ezetimibe

- Contraindications to statins
 - Active liver disease, including unexplained persistent elevations in hepatic transaminase levels (e.g., alanine transaminase (ALT) level ≥ 3 times ULN)
 - Women who are pregnant or may become pregnant
 - Nursing mothers
- Contraindication to ezetimibe
 - Hypersensitivity reactions (e.g., anaphylaxis, angioedema, rash and urticaria)

APPENDIX D: Diagnosis of familial hypercholesterolemia (FH)

A definite diagnosis of FH is made when one of the following diagnostic criteria is met:

- Genetic confirmation
 - An LDL-receptor mutation, familial defective apo B-100, or a PCSK9 gain-of-function mutation
- Simon-Broome Diagnostic Criteria for definite FH
 - Total cholesterol > 290 mg/dL or LDL-C > 190 mg/dL, plus tendon xanthomas in the patient, first (parent, sibling or child) or second degree relative (grandparent, uncle or aunt)
- Dutch Lipid Clinic Network Criteria for definite FH
 - Total score > 8 points
• Cost-effectiveness models are variable
• Each estimate compounds itself
• Slight adjustments in estimates can mean above or below an end threshold
• Something to occupy the industry as we wait for real outcomes data
High Level Summary of Literature

<table>
<thead>
<tr>
<th>Cost-Effectiveness Article</th>
<th>Statin-Benefit Group</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kazi et al, JAMA 2016¹</td>
<td>ASCVD</td>
<td>$414,000/QALY</td>
</tr>
<tr>
<td></td>
<td>HeFH</td>
<td>$316,300/QALY</td>
</tr>
<tr>
<td>Tice et al, JAMA Int Med 2016²</td>
<td>ASCVD (statin intolerant)</td>
<td>$274,000/QALY</td>
</tr>
<tr>
<td></td>
<td>ASCVD (LDL>70)</td>
<td>$302,000/QALY</td>
</tr>
<tr>
<td></td>
<td>HeFH</td>
<td>$290,000/QALY</td>
</tr>
<tr>
<td>Gandra et al, Clinical Cardiology 2016³</td>
<td>ASCVD (statin intolerant)</td>
<td>$100,309/QALY</td>
</tr>
<tr>
<td></td>
<td>ASCVD (LDL>70)</td>
<td>$141,699/QALY</td>
</tr>
<tr>
<td></td>
<td>HeFH</td>
<td>$141,699/QALY</td>
</tr>
</tbody>
</table>

Kazi et al Data Sources

- Example for costs:

<table>
<thead>
<tr>
<th>Cardiovascular Costs</th>
<th>Costs of CHD care, 2015 US $f</th>
<th>Log normal</th>
<th>California OSHPD, 200827,28; US Census Bureau29; Bureau of Labor Statistics30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute fatal MI hospitalization</td>
<td>53 565 (44 638-64 278)</td>
<td>Log normal</td>
<td>California OSHPD, 200827,28; US Census Bureau29; Bureau of Labor Statistics30</td>
</tr>
<tr>
<td>Acute nonfatal MI hospitalization</td>
<td>38 766 (32 305-46 519)</td>
<td>Log normal</td>
<td>California OSHPD, 200827,28; US Census Bureau29; Bureau of Labor Statistics30</td>
</tr>
<tr>
<td>Acute nonfatal MI and CABG</td>
<td>99 092 (82 577-118 910)</td>
<td>Log normal</td>
<td>California OSHPD, 200827,28; US Census Bureau29; Bureau of Labor Statistics30</td>
</tr>
<tr>
<td>Acute MI posthospitalization year 1 costs</td>
<td>12 338 (10 282-14 806)</td>
<td>Log normal</td>
<td>California OSHPD, 200827,28; US Census Bureau29; Bureau of Labor Statistics30</td>
</tr>
<tr>
<td>CHD costs, subsequent years</td>
<td>2520 (2100-3024)</td>
<td>Log normal</td>
<td>AHRQ31; Bureau of Labor Statistics30</td>
</tr>
<tr>
<td>Heart failure hospitalization</td>
<td>19 512 (16 260-23 414)</td>
<td>Log normal</td>
<td>California OSHPD, 200827,28; US Census Bureau29; Bureau of Labor Statistics30</td>
</tr>
<tr>
<td>Fatal stroke hospitalization</td>
<td>26 699 (22 249-32 039)</td>
<td>Log normal</td>
<td>California OSHPD, 200827,28; US Census Bureau29; Bureau of Labor Statistics30</td>
</tr>
<tr>
<td>Nonfatal stroke hospitalization</td>
<td>19 732 (16 443-23 678)</td>
<td>Log normal</td>
<td>California OSHPD, 200827,28; US Census Bureau29; Bureau of Labor Statistics30</td>
</tr>
<tr>
<td>Poststroke cost, months 2-11</td>
<td>34 712 (28 927-41 654)</td>
<td>Log normal</td>
<td>California OSHPD, 200827,28; US Census Bureau29; Bureau of Labor Statistics30</td>
</tr>
<tr>
<td>Poststroke cost, annual, subsequent years</td>
<td>5305 (4421-6366)</td>
<td>Log normal</td>
<td>AHRQ31; Bureau of Labor Statistics30</td>
</tr>
</tbody>
</table>
Sensitivity Analysis from Kazi et al 2016 JAMA Article

• Throw in odd values or changes to the system
• Sensitivity analyses performed include:
 – Higher LDL-C thresholds to define HeFH
 – Assume higher ASCVD risk than predicted
 – Used outcomes effects from clinical trials
 – Adding PCSK9i only after MI event
 – Adding PCSK9i for all eligible patients
 – Varying statin-intolerance from 3-20%
 – Adding 0.5% mild neuro issues w/ PCSK9i
 – Treating all statin-eligible/tolerant with statins
• The annual PCSK9i cost to line up with a $100,000 QALY: $4536

• Some scenarios that favored a higher cost (but still not AWP cost):
 – Higher LDL for dx of HeFH
 – Assuming higher ASCVD risk (2x) associated with LDL levels
 – Restricting to only statin-intolerant
 – Restricting to only MI pts
 – Reducing rate of statin-intolerance from 10% to 3%
Payer Coverage

<table>
<thead>
<tr>
<th>Payer</th>
<th>Alirocumab (Praluent)</th>
<th>Evolocumab (Repatha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>United/OptumRx</td>
<td>Covered, PA</td>
<td></td>
</tr>
<tr>
<td>CVS/Caremark</td>
<td></td>
<td>Covered, PA</td>
</tr>
<tr>
<td>Express Scripts</td>
<td>Covered, PA</td>
<td>Covered, PA</td>
</tr>
<tr>
<td>Aetna</td>
<td>Covered, PA</td>
<td>Covered, PA</td>
</tr>
<tr>
<td>Prime</td>
<td>Covered, PA</td>
<td>Covered, PA</td>
</tr>
<tr>
<td>Humana</td>
<td>Covered, PA</td>
<td></td>
</tr>
<tr>
<td>Cigna</td>
<td>Covered, PA</td>
<td>Covered, PA</td>
</tr>
</tbody>
</table>
At-Risk/Value-Based Contracts

• Standard discounts (access, tier, PA criteria, etc.)
• Additional discounts if medication does not meet LDL-C values in RCTs
• Soft spots:
 – Specific contract definitions for specific populations
 – Defining adherence criteria
 – Collection/housing of labs and outcome data

Personal Opinion

• It appears that WAC is so arbitrary that it’s a number used only for investors and shareholders, at the true cost of the uninsured.

• This appears to drive “cash price” up, but do payers or manufacturer’s care about cash-paying patients?

• Value-based pricing vs. investment-recoup pricing
REAL WORLD DATA
• Fairview Specialty Services Pharmacy:
 – Therapy Management program to ensure purposeful and thoughtful use of PCSK9 medications

• Program Structure:
 – Five to seven days after a patient receives their medication a pharmacist screens for potential adverse events, difficulty with self-injection, and potential adherence concerns

• Cholesterol values, including LDL cholesterol, are recorded prior to therapy initiation and again 100 days post-therapy to assess treatment effectiveness
• Dispensing data and health records were reviewed for all patients who received at least 84 days of PCSK9 Inhibitor therapy
• Dispensing data was used to calculate individual Medication Possession Ratios (MPR) adherence metric
• Health records were reviewed for change in LDL and any documented barriers to medication adherence, such as adverse events
• MPR values were then compared to LDL cholesterol laboratory value change from baseline to lab values after initiation of PCSK9 therapy
Change in LDL Values

Figure 1: Baseline LDL Vs. LDL With PCSK9 Therapy
(Arranged by % LDL reduction)

<70mg/dL
Adherence Data

Figure 1: Baseline LDL Vs. LDL With PCSK9 Therapy
(Arranged by % LDL reduction)

Figure 2: MPR for Treatment Regimen (N = 25)
Results

- Thirty patients were included in our evaluation of PCSK9 Inhibitor treatment; Average duration of PCSK9 Inhibitor therapy was 179 days (range 84 to 336 days)
- Patients with recorded LDL cholesterol values after initiation of therapy (N=25) experienced an average decrease of 100 mg/dL from baseline resulting in a 6% to 80% individual reduction
- The average MPR was 0.91 with a range from 0.67 to 1
- Two adverse events were reported and deemed unrelated to PCSK9i therapy
- Due to the small patient population and high level of adherence among patients with follow-up LDL values the impact of adherence on LDL lowering could not be assessed
Most Recent Data

• Discussion

• No LDL Available?
 – LDL = total cholesterol - VLDL - HDL
 – VLDL is often approximated by TG/5
 – If TG > 400, the calculation is invalid
 – Can order a direct LDL, but doesn’t occur often
 – **All guidelines used estimated, not-direct
Prime Therapeutics PCSK9i UM Poster from AMCP 2016

• UM, cost and discontinuation rate
• 13.4 million commercial members
• Examined first 5 months post-launch
• Discontinuation defined as 28-day gap

• Results:
 – 1,608 members w/ paid or rejected claim
 – 128 members had paid claim (380 claims total)
 – 2/3 Rx’d by cardiology or endocrine specialist
 – Use trended up, ended at 1.2/100,00 members
 – 57 (28%) discontinued therapy

Hyperlipidemia Pipeline

- **Inclisiran**
 - Medicines Company
 - Inhibits PCSK9 synthesis through RNA interference
 - SC dosing, possibly 2-3x/year
 - Phase III
- **Discussion:**
 - Similar efficacy to available PCSK9-inhibitors
 - Could compete directly

- **LY3015014**
 - Eli Lily
 - PCSK9 inhibitor
 - SC dosing, Q 4-8 Weeks
 - Phase II
- **Discussion:**
 - Not as robust of response, 37.1% to 50.5% reduction (better with 4 week dose)
 - Once it hits market, it would be a possible alternative

Hyperlipidemia Pipeline

• Anacetrapib
 – Merck
 – Cholesterol ester transfer protein (CETP) inhibitor
 – Oral, QD
 – Phase III
• Discussion:
 – 3 previously failed CETP drugs
 – Nov 13, 2015: interim analysis recommended continuation; results in 2017
 – Decreases LDL at statin-levels and increase HDL by 44-139%

• TA-8995
 – Amgen
 – Cholesterol ester transfer protein (CETP) inhibitor
 – Oral QD
 – Phase III
• Discussion:
 – 3 previously failed CETP drugs
 – Still early, last trial published January 2015
 – Decreases LDL at statin levels and increase HDL by 75-179%

Hyperlipidemia

- Bempedoic acid
 - Esperion
 - ATP-cirtrate lyase inhibition, disrupts cholesterol synthesis
 - Oral, QD
 - Phase III
- Discussion:
 - LDL lowering up to 43%
 - Outcomes far away

- Generic for ezetimibe/simvastatin
 - Possible game changer for contracting and preferred agents

http://www.esperion.com/therapies-progress/etc-1002/
Conclusions

• PSCK9i’s have a place in management of hyperlipidemia
• For now, that’s a very specific space
• PSCK9i’s are well tolerated and effective at lowering LDL-C in a small real-world cohort
• While we wait for outcomes data hopefully later this year, we can argue over cost-effectiveness models
Questions?

• Thank you for this opportunity!