Implement Effective Computer System Validation

Noelia Ortiz, MME, CSSGB, CQA
Session Outline

1. Understanding Regulations and Guidelines Pertaining to Computer Systems
2. Integrate SDLC and GAMP 5 in Computer Systems Validation
3. Risk-based Approach to Validation
4. Develop CSV Project Deliverables
5. Interactive Exercise
PART 1: UNDERSTANDING REGULATIONS AND GUIDELINES PERTAINING TO COMPUTER SYSTEMS
Key Sources of Regulations and Guidelines

- FDA Guidance & Reference Documents
- PIC/S Guidance Documents
- GAMP Guides (ISPE)
- IEEE Guides
- Regulations (Laws)
 - FDA 21 CFR…
 - Eudralex Volume…
- Company Policies and Procedures
- ICH Guidelines
- WHO Guidelines
FDA’s Federal Regulations

- FDA’s regulations are contained in title 21 of the code of the federal regulations (CFR)
 - CFR is a codification of the general and permanent rules published in the federal register by the executive departments and agencies of the federal government
FDA’s Federal Regulations

- There is no specific regulation that defines how to perform computer system validation.

- Very few regulations specifically deal with computer or automated systems.

- Terms such as “automated”, “electronic”, “records”, “data”, and “system” are indicators of regulations applicable to computer systems.
CFR Title 21

- Part 11 – Electronic Records /Electronic Signatures
 - 21CFR 11.10(a) requires validation for systems that fall under Part 11

- Part 820 – Quality Systems Regulations (Medical Devices)
 - 21CFR 820.70(i) requires computer systems validation for systems that fall under the quality system regulation
Regulations, Guidelines, References

<table>
<thead>
<tr>
<th>Audience</th>
<th>Type</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>Regulation</td>
<td>21 CFR 11: Electronic Records; Electronic Signatures</td>
</tr>
<tr>
<td>General</td>
<td>Guidance</td>
<td>Part 11, Electronic Records; Electronic Signatures – Scope and Application</td>
</tr>
<tr>
<td>General</td>
<td>Guidance</td>
<td>General Principles of Software Validation</td>
</tr>
<tr>
<td>General</td>
<td>Reference</td>
<td>FDA Office of Regulatory Affairs Laboratory Manual</td>
</tr>
<tr>
<td>Drug</td>
<td>Regulation</td>
<td>21 CFR 210: Current Good Manufacturing Practice in Manufacturing, Processing, Packing, or Holding of Drugs; General</td>
</tr>
<tr>
<td>Drug</td>
<td>Regulation</td>
<td>21 CFR 211: Current Good Manufacturing Practice for Finished Pharmaceuticals</td>
</tr>
<tr>
<td>Drug</td>
<td>Reference</td>
<td>FDA ORA Guide to Inspection of Computerized Systems in Drug Processing</td>
</tr>
<tr>
<td>Biological</td>
<td>Regulation</td>
<td>21 CFR 600: Biological Products: General</td>
</tr>
<tr>
<td>Device</td>
<td>Regulation</td>
<td>21 CFR 820: Quality System Regulation</td>
</tr>
<tr>
<td>Device</td>
<td>Guidance</td>
<td>Off-The-Shelf Software Use in Medical Devices</td>
</tr>
<tr>
<td>Device</td>
<td>Guidance</td>
<td>Contents for Premarket Submissions for Software Contained in Medical Devices</td>
</tr>
<tr>
<td>Blood</td>
<td>Regulation</td>
<td>21 CFR 606: Current Good Manufacturing Practice for Blood and Blood Components</td>
</tr>
<tr>
<td>Clinical</td>
<td>Regulation</td>
<td>21 CFR 50: Protection of Human Subjects</td>
</tr>
<tr>
<td>Clinical</td>
<td>Regulation</td>
<td>21 CFR 56: Institutional Review Boards</td>
</tr>
<tr>
<td>Clinical</td>
<td>Guidance</td>
<td>Computerized Systems Used in Clinical Investigations</td>
</tr>
<tr>
<td>Lab</td>
<td>Regulation</td>
<td>21 CFR 58: Good Laboratory Practice for Nonclinical Laboratory Studies</td>
</tr>
</tbody>
</table>
Predicate Rules

- Validation of computer systems are governed by the predicate rules

- Requirements set forth in the regulation of a process also applies to the computer system utilized in that process

- The computer or automated system must comply with the same regulations for manual or paper-based system

Predicate Rules = All 21 CFRs
Eudralex

- The rules governing medicinal products in the European Union
- Volume 4: Good Manufacturing Practice for Medicinal Products for Human and Veterinary Use
- Annex 11: Computerised Systems
Eudralex Volume 4, Annex 11

- Validation
- Periodic Evaluation
- Incident Management
- Accuracy Check
- Electronic Signature
- Software Suppliers and Service Providers
- Change and Configuration Management
- Risk Management
- Business Continuity
- System Inventory
- Data Storage
PART 2: INTEGRATE SDLC MODULES AND GAMP 5 IN CSV
SDLC Methods

- System Development Life Cycle is a conceptual module used in project management that describes the stages involved in an information system development project.

- Various SDLC methodologies have been developed.
SDLC Steps

- **Objective**: Understand, Plan, Develop, Implement, Maintain
- **Steps**: System Investigation, System Analysis, System Design, System Implementation, System Maintenance
- **Product**: User Requirements, Functional Requirements, System Specifications, Operational System, System Improvement
SDLC Model

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Highlights</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code and Fix</td>
<td>• Informal design and coding</td>
<td>• Not recommended</td>
</tr>
<tr>
<td>Waterfall</td>
<td>• Orderly sequence of steps</td>
<td>• Good when final product is well defined</td>
</tr>
<tr>
<td></td>
<td>• Planning performed up front</td>
<td>• Document driven</td>
</tr>
<tr>
<td>Staged</td>
<td>• Well defined incremental implementation</td>
<td>• Useful functionality delivered earlier</td>
</tr>
<tr>
<td>Spiral</td>
<td>• Independent iterations</td>
<td>• Not recommended</td>
</tr>
<tr>
<td></td>
<td>• Final product is not defined</td>
<td></td>
</tr>
<tr>
<td>Agile</td>
<td>• Delivery of small incremental functionality</td>
<td>• Active user involvement in all stages</td>
</tr>
<tr>
<td></td>
<td>• Short and intense cycles</td>
<td>• Difficult to determine project duration and resources requirements</td>
</tr>
</tbody>
</table>
Principles and Purpose of ISPE GAMP 5™

The purpose of the GAMP 5 is to assist companies and healthcare industries, including pharmaceutical, biotechnology, and medical device to achieve validated and compliant automated systems.
GAMP 5 Non-Configured Products

Planning

Verifies

User Requirement Specifications

Requirements Testing

Verification

Specification

Purchase

Reporting

Verifies
GAMP 5 Configured Products

Planning

Verifies

User Requirement Specification

Functional Specification

Configuration Specification

Purchase

Reporting

Requirements Testing

Functional Testing

Configuration Testing

Specification

Verification

Verifies
GAMP 5 Custom Applications

- Planning
 - User Requirement Specification
 - Functional Specification
 - Design Specification
 - Module/Unit Specification
 - Code Modules

- Reporting
 - Functional Testing
 - Integration Testing
 - Unit Testing

- Requirements Testing

Verification flows:
- User Requirement Specification
- Functional Specification
- Design Specification
- Module/Unit Specification
- Code Modules
- Verification
PART 3: RISK BASED APPROACH TO VALIDATION
Risk Terminology

- **Hazard** = A potential source of harm

- **Risk** = The combination of the **probability** of occurrence of a hazard and the **severity** of the harm

- **Risk Assessment** = A comprehensive evaluation of risks and associated impacts

- **Risk Mitigation** = Actions taken to reduce the impacts of risks
Risk Management Framework

- Risk Assessment
 - System Risk Assessment SOP
 - SOP’s
 • Risk Based Validation
 • Audit Trails
 • System Security
 • Software Vendor Assessment
 • User Training
 • Incident Management
 • System Backup
 • Alternate Records
 • etc.
Risk Assessment
Roles and Responsibilities

<table>
<thead>
<tr>
<th>Role</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business Process Owner</td>
<td>Identify, Evaluate and Classify Risks</td>
</tr>
<tr>
<td>Technology Owner</td>
<td>Provide information on how the software works and evaluate failures and impact</td>
</tr>
<tr>
<td>Quality Assurance</td>
<td>Evaluate Risks associated with Regulatory Compliance and Company Policies</td>
</tr>
</tbody>
</table>
When does Risk Assessment take place?

1. Preliminary Risk Screening
2. Planning
3. Specification
4. Verification
5. Reporting
6. Purchase, Coding or Configuration
7. Detailed Risk Assessment
Risk Assessment Steps

Risk Assessment Activities

1. Identification
 - Determine and document the hazards associated with use of the system

2. Evaluation
 - Determine the severity of the identified hazards

3. Classification
 - Categorized the risks according to severity

4. Mitigation
 - Perform activities that reduce the severity of the risk or the likelihood of the risk
Risk Assessment Steps: Identification

What could go wrong with the system?

- Areas of Focus
 - Which are the features or functions that would negatively impact?
 - Patient Safety
 - Product Quality
 - The integrity of associated data
Risk Assessment Steps: Evaluation

What are the consequences of the hazard?

What is the likelihood the hazard will occur?

Risk = The combination of the probability of occurrence of a hazard and the severity of the harm

Probability is measured as Complexity

Severity is measured as Criticality
Risk Assessment Steps: Probability Evaluation

<table>
<thead>
<tr>
<th>Complexity Level</th>
<th>Definition</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Standard, Non-configured functions with off-the-shelf systems</td>
<td>• Test result report within an off-the-shelf laboratory system</td>
</tr>
<tr>
<td>Medium</td>
<td>Configured functions within off-the-shelf systems</td>
<td>• Calculation configured in a laboratory system</td>
</tr>
<tr>
<td>High</td>
<td>Custom developed functions within purchased or custom systems</td>
<td>• Custom report developed in Crystal Reports</td>
</tr>
</tbody>
</table>
Risk Assessment Steps: Severity Evaluation

<table>
<thead>
<tr>
<th>Level</th>
<th>Definition</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Criticality</td>
<td>Direct Control of:</td>
<td>• Manufacturing Controls</td>
</tr>
<tr>
<td></td>
<td>• Manufacturing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Labeling</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Distribution</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Product Testing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Product Release</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Direct Impact on:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Product Quality</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Product Efficacy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Patient Safety</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Personnel Safety</td>
<td></td>
</tr>
<tr>
<td>Medium Criticality</td>
<td>Indirect impact on patient safety, product quality, or the integrity of associated data.</td>
<td>• Calibration Tracking</td>
</tr>
<tr>
<td>Low Criticality</td>
<td>No impact on patient safety, product quality, or the integrity of associated data.</td>
<td>• Manufacturing Cost Reports</td>
</tr>
</tbody>
</table>
Risk Based Approach to Validation Testing

<table>
<thead>
<tr>
<th>Criticality</th>
<th>High</th>
<th>High</th>
<th>High</th>
<th>Medium</th>
<th>Medium</th>
<th>Medium</th>
<th>Low</th>
<th>Low</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complexity</td>
<td>High</td>
<td>Medium</td>
<td>Low</td>
<td>High</td>
<td>Medium</td>
<td>Low</td>
<td>High</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>Path Testing</td>
<td>All Paths, Multiple Scenarios</td>
<td>All Paths, Single Scenario</td>
<td>All Paths, Single Scenario</td>
<td>All Paths, Single Scenario</td>
<td>All Paths, Single Scenario</td>
<td>Sampling*</td>
<td>Sampling*</td>
<td>Sampling*</td>
<td>Sampling*</td>
</tr>
<tr>
<td>Boundary Testing</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
</tr>
<tr>
<td>Test Case degree of detail</td>
<td>Specific, Detailed</td>
<td>Specific, Detailed</td>
<td>Specific, Detailed</td>
<td>Medium Detailed</td>
<td>Medium Detailed</td>
<td>Medium Detailed</td>
<td>General*</td>
<td>General*</td>
<td>General*</td>
</tr>
<tr>
<td>Test Data Similar to Production Data</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
</tr>
<tr>
<td>User Acceptance Testing</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
</tr>
</tbody>
</table>

✓ Required * When documented testing is performed
Risk Based Approach to Validation Documentation

<table>
<thead>
<tr>
<th>Criticality</th>
<th>High</th>
<th>High</th>
<th>High</th>
<th>Medium</th>
<th>Medium</th>
<th>Medium</th>
<th>Low</th>
<th>Low</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complexity</td>
<td>High</td>
<td>Medium</td>
<td>Low</td>
<td>High</td>
<td>Medium</td>
<td>Low</td>
<td>High</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>Change Request</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Risk Assessment</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Project Plan</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
</tr>
<tr>
<td>Validation Plan</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
</tr>
<tr>
<td>User Requirements</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
</tr>
<tr>
<td>Functional Specification</td>
<td>✓ Highly Detailed</td>
<td>✓ Highly Detailed</td>
<td>✓ Highly Detailed</td>
<td>✓ Medium Detail</td>
<td>✓ Medium Detail</td>
<td>✓ Medium Detail</td>
<td>Optional Low Detail</td>
<td>Optional Low Detail</td>
<td>Optional Low Detail</td>
</tr>
<tr>
<td>System Design Documents</td>
<td>✓</td>
<td>✓</td>
<td>N/A</td>
<td>✓</td>
<td>✓</td>
<td>N/A</td>
<td>Optional</td>
<td>Optional</td>
<td>N/A</td>
</tr>
<tr>
<td>Test Plan</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
</tr>
</tbody>
</table>

✓ Required * When documented testing is performed
Risk Based Approach to Validation Documentation

<table>
<thead>
<tr>
<th>Criticality</th>
<th>High</th>
<th>High</th>
<th>High</th>
<th>Medium</th>
<th>Medium</th>
<th>Medium</th>
<th>Low</th>
<th>Low</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complexity</td>
<td>High</td>
<td>Medium</td>
<td>Low</td>
<td>High</td>
<td>Medium</td>
<td>Low</td>
<td>High</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>Validation Protocols (IQ, OQ, PQ)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
</tr>
<tr>
<td>Validation Incident Reports</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
</tr>
<tr>
<td>Testing Summary</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
</tr>
<tr>
<td>Trace Matrix – URS to FS</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
</tr>
<tr>
<td>Trace Matrix – FS to Design</td>
<td>✓</td>
<td>✓</td>
<td>N/A</td>
<td>✓</td>
<td>Optional</td>
<td>N/A</td>
<td>Optional</td>
<td>Optional</td>
<td>N/A</td>
</tr>
<tr>
<td>Trace Matrix – FS to Val Test</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
</tr>
<tr>
<td>Trace to</td>
<td>✓</td>
<td>✓</td>
<td>N/A</td>
<td>✓</td>
<td>✓</td>
<td>N/A</td>
<td>Optional</td>
<td>Optional</td>
<td>N/A</td>
</tr>
<tr>
<td>Validation Summary</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
</tr>
<tr>
<td>Deployment Plan</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
</tr>
<tr>
<td>Data Conversion Plan</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
</tr>
</tbody>
</table>

✓ Required * When documented testing is performed
Risk Based Approach to Validation Activities

<table>
<thead>
<tr>
<th>Criticality</th>
<th>High</th>
<th>High</th>
<th>High</th>
<th>Medium</th>
<th>Medium</th>
<th>Medium</th>
<th>Low</th>
<th>Low</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complexity</td>
<td>High</td>
<td>Medium</td>
<td>Low</td>
<td>High</td>
<td>Medium</td>
<td>Low</td>
<td>High</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>Vendor Assessment</td>
<td>N/A</td>
<td>✓</td>
<td>✓</td>
<td>N/A</td>
<td>✓</td>
<td>✓</td>
<td>N/A</td>
<td>Optional</td>
<td>Optional</td>
</tr>
<tr>
<td>Unit Testing</td>
<td>✓</td>
<td>N/A</td>
<td>N/A</td>
<td>✓</td>
<td>N/A</td>
<td>N/A</td>
<td>Optional</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Code Review</td>
<td>✓</td>
<td>N/A</td>
<td>N/A</td>
<td>✓</td>
<td>N/A</td>
<td>N/A</td>
<td>Optional</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Design Review</td>
<td>✓</td>
<td>✓</td>
<td>Optional</td>
<td>✓</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
</tr>
<tr>
<td>Part 11 Compliance Assessment</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Verification of System Use and Support SOPs**</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
</tr>
</tbody>
</table>

✓ Required

** System Use and Support SOPs include Back-up, Recovery, Security and Access, Training Requirements, Incident Handling, Change Management, Technical Operation and Routine Maintenance, User Operation, etc.
Risk Assessment Steps: Risk Mitigation through Procedures

<table>
<thead>
<tr>
<th>SOP</th>
<th>Risk Mitigation based of Risk Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vendor Assessment</td>
<td>Vendor Assessment Method</td>
</tr>
<tr>
<td>Audit Trail</td>
<td>Audit Trail Requirement</td>
</tr>
<tr>
<td>Security and Access</td>
<td>Password Change Frequency</td>
</tr>
<tr>
<td>Training Requirements</td>
<td>Training Format</td>
</tr>
<tr>
<td>Back-up</td>
<td>Backup Location and Backup Media Audit Frequency</td>
</tr>
<tr>
<td>Alternate Records</td>
<td>Alternate Procedure Required or Second Person Verification Required</td>
</tr>
<tr>
<td>Incident Handling</td>
<td>Resolution Priority</td>
</tr>
</tbody>
</table>
Risk Analysis Methods: GAMP

Severity = Impact on Patient Safety, Product Quality or Data Integrity
Probability = Likelihood of fault occurring

Risk Class = Severity x Probability

Detectability = Likelihood that the fault is detected

Priority = Risk Class x Detectability
Risk Analysis Methods: FMECA

Failure Mode Effect Criticality Analysis

- \(C = P \times S \times N \)
 - \(C \): Criticality
 - \(P \): Probability of Failure Mode
 - \(S \): Severity
 - \(N \): Probability of Not Detecting Failure Mode or Effect

Greater Criticality = Higher Risk

FMECA makes you think through the consequences of failures
PART 4: CSV PROJECT DELIVERABLES
Standard Validation Project
Planning – Change Request

- It is the mechanism to document the change to be performed in a controlled manner
- Provide a detailed description of all the proposed changes to the system
- Perform an impact assessment to determine the direct or indirect impact of the change
- Perform a validation assessment to determine the validation effort necessary for the change
- Approve/Reject change request
Planning – Project Plan

- Approved document used to establish project organization, execution and control
- Content may be covered in the project charter
- Defines project stakeholders and roles
Validation Plan

- Defines the validation strategy including:
 - Roles and Responsibilities
 - System Description
 - Validation Scope
 - Project Deliverables
 - Level of Testing
 - Project Timeline
Planning – Additional Deliverables

- **Initial Risk Assessment**
 - Initial Risk Assessment is likely to focus in important risk to GxP and to the business process

- **Supplier Assessment**
 - Provides information on product including risks and controls
The test plan should be approved by Technical, Business and Quality Assurance experts.

Documents the strategy that will be used to verify and ensure that the system meets its design specification and other requirements.

Includes a detailed list of the testing to be performed.

Defines different system environments:
Requirements Specification

- **User Requirements Specifications (URS)**
 - Business requirements
 - What business process the system will perform?

- **Functional Specification (FS)**
 - The features and functions needed by the system
 - For both business and technical audiences
User Requirements vs. Functional Requirements

User Requirements

- **Non-technical** statements of what the user needs the system to do for them
- Includes service and support requirements and constraints
- Audience is business users

Functional Requirements

- **Detailed** statements of how the system will interact and react to users to accomplish what they need
- Includes specifics such as speed, size, back up frequency, etc.
- Audience is business users and technical individuals
Never forget! The URS audience is the Users and they need to be involved during the URS development.
Design/Configuration Specification

- **Design Specification**
 - Includes how the features and functions identified in the Functional Specification will be implemented
 - Includes the logical structure and processing steps
 - Level of detail depends on the severity and complexity of the system

- **Configuration Specification**
 - Should be used for Custom Off The Shelf (COTS) systems
 - Includes customizations and configurations
Design Review

Design reviews include examination of:

- Development standards
- Development plans
- Requirements specifications
- Design specifications
- All other documents and activities associated with the project
- Verification results from each previous stage of the life cycle
- History of previously reported issues for existing software
Build/Configuration

- Planning
- User Requirement Specification
- Functional Specification
- Design/Configuration Specification
- Build/Configuration
- Requirements Testing
- Functional Testing
- Build/Configuration Testing
- Reporting

Build. Config.
Build/Configuration

- Implement configuration per:
 - Design/Configuration Specification
 - Coding guidelines - coding conventions regarding clarity, style, complexity management and commenting

- Source code evaluation
 - Code inspections, walkthroughs and reviews by peers and technical managers
What is Computer System Validation?

Confirmation by examination and provision of **objective evidence** that software **specifications** conform to user **needs** and **intended uses**, and that the particular **requirements** implemented through software can be **consistently** fulfilled.
Build/Configuration vs. Testing

They are not so much different, but they have different path for the same goal, to improve quality!!

the9gag.com
Principles of Testing

A good test case has:

- High probability of exposing an error
 - Steady-State Testing (Normal Conditions)
 - Stress Testing (Abnormal Conditions)
- Predefined Expected test outcome
- Independence from Coding
- Test documentation permits independent confirmation of the Pass/Fail status of a test outcome during subsequent review
Types of Testing - Structural vs Functional

- **Structural Testing** (White-Box Testing)
 - Takes into account the internal structure of a system.
 - Testing of all Branching, Path, Statements.

- **Functional Testing** (Black-Box Testing)
 - Focuses on outputs generated in response to selected inputs
 - Focuses on compliance to functional requirements
 - Ignores the internal structure of a system
Types of Testing

- **Unit Testing** - Verifies the implementation of the DS for one software element.

- **Integration Testing** - Verifies interactions between software and hardware elements in orderly progression until the entire system has been tested.

- **System Testing** – Verifies that integrated hardware and software system meets specified requirements.

- **Acceptance Testing** – Verifies if the system satisfies its acceptance criteria and enables the customer to accept the system.
Testing Techniques

- **Path Testing** – Coverage of each logical path

- **Branch Testing** – For each decision point, each possible branch is executed at least once
Worst Case Testing Techniques

- **Special Case Testing** – Using input values or types likely to cause program errors
- **Volume Testing** – Evaluates system’s ability to manage the maximum amount of data over a period of time in an orderly fashion
- **Boundary Test** – Testing input and output values just below and above the defined limits
- **Stress Testing** – Evaluates system at the limits or beyond each requirement
Writing Test Cases

- Include Test description and Objectives, Pre-requisites.
- Types of instructions:
 - Setup steps
 - Test Steps
 - Navigation Steps
- Cover all testing specified in Test Plan
- Provide sufficient details (but not too much) for the experience level of the tester.
Writing Test Cases

- Minimum Test Requirements:
 - Test Steps or Actions
 - Expected Results
 - Actual Results
 - Pass/Fail
 - Initials and Date
 - Comments
Providing Objective Test Evidence

Test documentation should allow for objective decision making subsequent to running the test.

- **Screen Capture:**
 - Best method to allow objective decision making
 - Can be challenging for tester
 - Limit to critical steps that verify requirements

- **Report and Database Queries:**
 - Captures both format and data content

- **Witnessed Result:**
 - Use for non-critical applications or when there is no other means to generate objective evidence
Streamlining Testing Strategies

- **Family Approach**
 - Test software code once per family or library object.
 - Only test installation for instances of library object.

- **Risk Based Testing**
 - Level of testing is based on risk based as determined in Risk Assessment.
 - Use of Pre-approved forms and test cases for lower risk testing.

- **Minimize Tester Errors**
 - Use checkboxes or prefilled Actual Results.
Streamlining Testing Strategies

Integrating Commissioning and Validation

Pros:
- Leverage Vendor Documentation and Testing
- Eliminate duplicate testing

Cons:
- Need to incorporate quality at all stages of project
- Vendor and Commissioning needs to follow GMP and SOPs

Combining Deliverables
- Validation Plan and Test Plan
- Test Case and Test Summary Report
- PQ and Validation Report
Installation Qualification (IQ)

- Documented process that ensures that the system is installed and configured properly.

- Usually performed on Validation and Production Environments

- Includes the following verifications:
 - Software and Hardware against Purchase Order
 - Software and Hardware components and versions.
 - System Documents and Drawings
Installation Qualification (IQ)

- Verification of Setup and Configuration:
 - Hardware
 - Support Software (Server software, databases, OS, etc.)
 - Application Software
 - Peripherals (Scanners, Printers, other data collecting or recording components)
Operational Qualification (OQ)

- Documented Process that ensures that the system functions and operates properly.
- Testing of the Functional and Design Specifications
- Tests may include:
 - Navigating to all parts of system
 - Loop Checks and Calibrations
 - Testing lowest level functional item and working upward until all functions are tested
 - Failure and Alarming
 - Sequence of Operations
- Testing System Performance under simulated conditions
- Testing performed in Validation Env. when available
Performance Qualification (PQ)

- Documented process that ensures that the system perform to business/user requirements
- Testing of URS
- Tests may include:
 - Verification that the system has the features needed to support automation of the business operations
 - Testing following processes in SOPs
Incident Management

- Test Failures:
 - Tester Error
 - Protocol Generation Error
 - Specification Error
 - Configuration Error

- Completion of Incident Reports
 - Timely
 - Similar failures may be combined in one Incident Report
 - Incident resolution must be determined by technical subject matter experts
Incident Management

- Resolution (subject to QA SOP and approver):
 - Protocol Generation Error – If evidence is correct no re-testing is required
 - Tester Error – If evidence is correct no re-testing is required. If steps were not followed correctly, re-testing is required.
 - Specification Error – Update documentation. If evidence is correct no re-testing is required.
 - Configuration Error – Update system configuration. If required, update specification. Re-testing is required. Evaluate if regression testing is required.
Test Summary

- Summary of all testing activities and results
- List all incident or deviations from test cases or test plan that occurred during testing activities
Validation Summary

- Procedures followed
 - Computer System Validation
 - Software Life Cycle
 - Risk Assessment and Mitigation
 - Test Execution and Documentation

- Validation Approach
 - URS
 - FS
 - DS
 - Development and Configuration
Validation Summary

- **Testing Approach**
 - User Requirements verified by PQ
 - Functional Specifications verified by OQ

- **Validation Protocols**
 - List of protocols or a summary with reference to details in Test Summary

- **Validation Incidents**
 - List of incidents and status, or summary with reference to details in Test Summary

- **Validation Deliverables**
Validation Summary

- Additional Quality Assurance activities:
 - User Manuals
 - Training Materials
 - SOPs for system use and system support

- Final Conclusion
 - State the current status of the system
 - System is now fit for use and released
Closing the Validation Cycle

- The most important documents in the validation process are the Validation Plan and Validation Summary.

- FDA inspectors are likely to review these documents during an audit.

![Diagram of Validation Plan and Validation Summary](image)
Documented evidence that all requirements have been implemented correctly and completely traceable to system requirements.

The traceability matrix document is updated at end of each stage of lifecycle.
Traceability Matrix

User Requirements Specification

Functional Specification

Design Specification

Testing (IQ, OQ, PQ)
PART 5: INTERACTIVE EXERCISE
Define Project:

Install Environmental Monitoring System
Standard Validation Project Example
URS- What do we want the system to do?

1. Honeywell COTS Environmental Monitoring System to be installed in aseptic manufacturing area.
2. Monitors temperature in Fahrenheit and Celsius and relative humidity in %RH.
3. Measurements are acceptable with .5% tolerance.
4. Central computer located in third floor in a controlled access room.
5. Temperature Alarm high limit is 100 F and low limit is 0 F.
6. Sends email to help@superems.com when alarming.
7. Has audible horn.
8. System is named Super EMS.
9. System computer (HMI) has main and alarm graphical displays.
10. System may be accessed remotely through the internet through IP address 10.24.255.255.
1. Honeywell COTS Environmental Monitoring System to be installed in aseptic manufacturing area.

2. Monitors temperature in Fahrenheit and Celsius and relative humidity in %RH.

3. Measurements are acceptable with .5% tolerance.

4. Central computer located in third floor in a controlled access room.

5. Temperature Alarm high limit is 100 F and low limit is 0 F.

6. Sends email to help@superems.com when alarming.

7. Has audible horn.

8. System is named Super EMS.

9. System computer (HMI) has main and alarm graphical displays.

10. System may be accessed remotely through the internet through IP address 10.24.255.255.
1. The system shall be a COTS system configured to monitor environmental conditions in the aseptic manufacturing area.

2. The system shall monitor environmental conditions.

3. The system shall have instrumentation capable of measuring temperature and relative humidity.

4. The system shall have a central computer located in a controlled access room.

5. The system shall be capable of sending emails when in alarming state.

6. The system shall be capable of having audible horn when in alarming state.

7. The system shall have graphical displays for Human Machine Interface computer.

8. The system shall have capability of being accessed remotely.
Risk Assessment Steps: Probability Evaluation

<table>
<thead>
<tr>
<th>Complexity Level</th>
<th>Honeywell COTS</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Standard, Non-configured functions with off-the-shelf systems</td>
<td>• Test result report within an off-the-shelf laboratory system</td>
</tr>
<tr>
<td>Medium</td>
<td>Configured functions within off-the-shelf systems</td>
<td>• Calculation configured in a laboratory system</td>
</tr>
<tr>
<td>High</td>
<td>Custom developed functions within purchased or custom systems</td>
<td>• Custom report developed in Crystal Reports</td>
</tr>
</tbody>
</table>
Risk Assessment Steps: Severity Evaluation

<table>
<thead>
<tr>
<th>Level</th>
<th>Definition</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Criticality</td>
<td>Direct Control of: • Manufacturing • Labeling • Distribution • Product Testing • Product Release Direct Impact on: • Product Quality • Product Efficacy • Patient Safety • Personnel Safety</td>
<td>• Manufacturing Controls</td>
</tr>
<tr>
<td>Medium Criticality</td>
<td>Indirect impact on quality, or the integrity of associated data.</td>
<td>• Calibration Tracking</td>
</tr>
<tr>
<td>Low Criticality</td>
<td>No impact on quality, or the integrity of associated data.</td>
<td>• Manufacturing Cost Reports</td>
</tr>
</tbody>
</table>
Risk Analysis

Risk Class = ?

Risk High

Severity = Impact on Patient Safety, Product Quality or Data Integrity
Probability = Likelihood of fault occurring

Risk Class = Severity x Probability

Detectability = Likelihood that the fault is detected

Priority = Risk Class x Detectability
Testing

- IQ:
 - Software Verification
 - Hardware Verification
 - Drawing Walk-downs
 - Calibration Verification
 - Code Transfer/Installation
 - Graphic Display Navigation
 - Environmental Conditions
Testing

- **OQ:**
 - Loop Checks
 - Configuration Verification
 - Alarm-Boundary Testing
 - System SOP Verifications

- **PQ:**
 - One month Performance Monitoring
 - Effective SOP Verification
Traceability Matrix

<table>
<thead>
<tr>
<th>Traceability Document Reference</th>
<th>URS Requirement Number</th>
<th>FS/DS Section/Step</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual Document Wording</td>
<td>(The system shall be capable of having high and low temperature Alarms)</td>
<td>(Temperature Alarm high limit is 100 F ±5%)</td>
<td>(Verify normal conditions = No Alarm Temp 94 F= No Alarm Temp 100F = Alarm Restore = No Alarm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Temperature Alarm low limit is 0 F ±5%.)</td>
<td>(Verify normal conditions = No Alarm Temp 6 F= No Alarm Temp 0 F = Alarm Restore = No Alarm)</td>
</tr>
</tbody>
</table>
Questions????